
## Econ 802 Answers to Second Midterm

Greg Dow November 2020 I (a) First divide costs into fixed (A) and variable (By + Cy2). Average fixed cost is A Average variable cost 15 B+Cy Average total east is A + B+ Cy Marginel cost is B+ 2C4 AVC AFC AFC is always falling and >0 as y so AUC and MC are linear have the same vertical intercept ad MC 15 twice as steep as AVC. ATC is U-shaped (you can do some calculus to confirm This) and MC passes Through its minimum point Also, ATC is above AVC but The gap between Them falls as AFC > 0 at lesse atputs. (b) For fixed input prices by the expension path is The set of all points that are the cost-minimizing way to produce some atput level 4 >0.



2(a) The important Thing to notice is That The utility function is just a Cobb-Douglas function with a Ministign in front. It he hold u constant he can write -u = x<sup>a</sup> x<sup>b</sup> so The indifference curves must have The same shape as The isoquents for a (-D) production function;

\*2

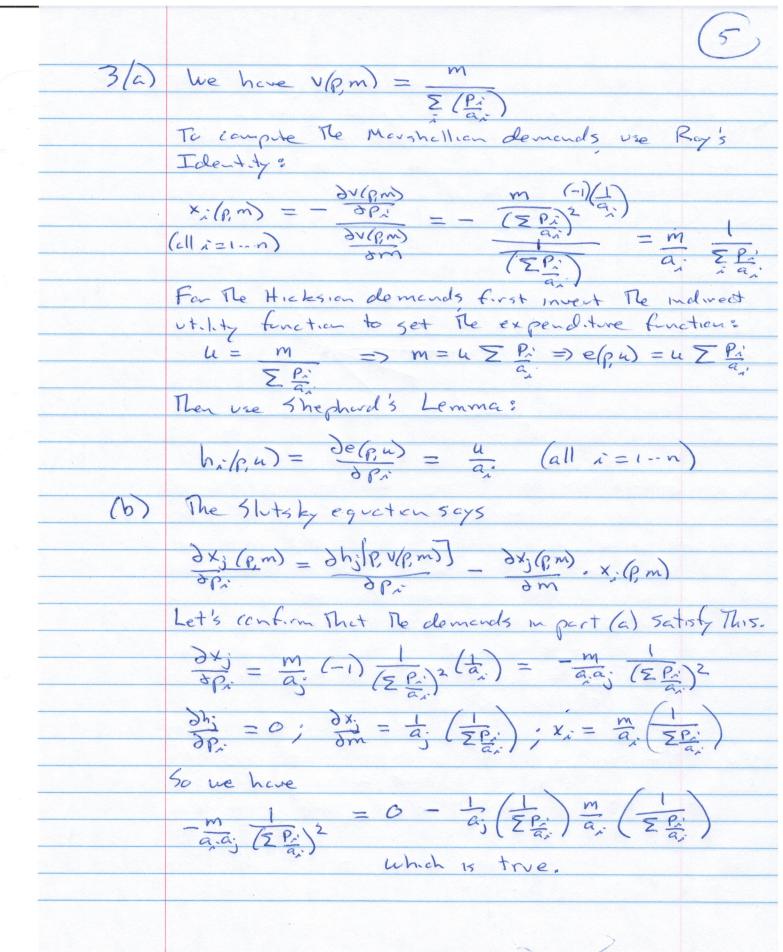
You can verify that The ICs

Cre downward sloping and

bend toward The arigin

Using calculus: The marginal

rate of substitution is


MRS = - MU,

MUZ

where Mui in The

The only real difference from a Cobb-Darglas ruse
in That here x and x are backs rutter Than goods
so utility is increasing as we get closer to the origin.

The highest possible utility is zero. This occurs when either x =0 or x =0 or both. Otherwise utility is negative. One way to get zero utility is t = x=10 which costs iop. If Iop < m or 10 < m. Then There is no need to spend all of m in order to set zero utility; less than m will be sufficient. The same is true if Iop < m or IOp < m or IOp < m or Iop = m it is possible to achieve zero utility but it is necessary to spend all of m to do it. If Iop > m and Iop > m, every point on the constraint line pit + pitz = m leaves x > 0 and x > 0. In This case Mr. Clean still has some diet and trush even when he spends all of his income. He would like more cleaning services but can't affect it.



A good goess hald be a Leonthef utility function of the form  $u(x) = m_1 x + \ldots + u(x) = u(x) = u(x)$ .

The reason is that the Hicksian demands in part (a) do not depend on the prices to There are no substitution effects. This is consistent with a graphical analysis of the two good cases in the minimize the expenditure for the indiff curve us we will always chaose the carner point  $x^*$  in matter what the matter what the

To contine That This guess is correct, let's minimize expenditive in The n-good case. Fix The itility level us we need ax = -- aix = -- anx = u for all i.

If any x is smaller we don't achieve u col it any x is larger we are spending money unnecessarily (it would be cheapen to reduce x is lightly). So The Hicksian demands must be obtained from ax = u for all i = 1... or x = h(pu) = u

This gives The expenditure function e(pw) = \( \frac{7}{2} \) = \( \frac{7}{2} \) which is what we had in part (6).

Inverting This gives The indirect whiley function.

Note: if you try to use the method u(x) = min v(pi)
The prices will drop at of the FOC. Subject to px = 1
The problem is that the direct utility function is not
differentiable and the inverse demand functions are
not well defined.

4(a) From The budget constraint pc = wH +r we have pc = w(T-L)+r => pc + wL = wT+r Set up The usual Lagrangeon call this m. to find The Marshallion de monds; L = luc + lu L - d[pc+wh-m FOC:  $\frac{1}{c} - dp = 0$   $\frac{1}{c} - dw = 0$ Substitute into the constraint: pc + w(PC)=m  $= 7 2 pc = m \Rightarrow 5c = \frac{m}{2p}$   $= 50 C(pwr) = \frac{wT+r}{2p}$   $= \frac{m}{2w}$   $= \frac{m}{2w}$   $= \frac{wT+r}{2w}$ Note: The utility function is a log transformation of a Cobb-Dasles fraction which he know is strictly quasi-concave. Revetore we don't need to check SOC. he could use either Hicksian or functional separability. The Hicksian approach is easier 30 I will use it here. Write The consumption bundle in The form (L C, . C) where L is lessure. Let The prices be (wpp..pr). Assure The vector P = (p. . px) always satisfies p = tpa for some fixed vector po with too so The relative prices of the consumption goods don't change. we can write indirect utility as max  $u(L, C, c_k)$  s.t.  $uL + tp_0 C = M$  (L, C) where C = CC, CC is a vector. Think of (poc) as a composite consumption good whose price is t. Define big C = poc and go from the indirect utility function v(u,t,m) back to a direct utility function isovolving Land C:

Thus aggregation becomes possible.

The strue that we cannot say for certain whe Then Murshallian demand curves slope up andown. But the theory makes some definite predictions that could be tested using data. The matrix version of The slutsly equation is  $\partial x(\rho,m) = \partial h[\rho,v(\rho,m)] = \partial x(\rho,m) = \partial h[\rho,v(\rho,m)]$ or  $\partial x(\rho,m) + \partial x(\rho,m) = \partial h[\rho,v(\rho,m)] = \partial h[\rho,v(\rho,m)]$ 

Also, Shepherd's Lemma gives the h/pu = de(pu) dp where the expenditure function is concave in prices. Therefore the Hessian de(pu) = dh(pu) is negative semi-definite dp2 dp dp Gard symmetric). This implies that the matrix

dx(pm) + dx(pm).x(pm) is symmetric and negative serni-def.

If we had data on pm and x we could estimate The domand functions and test whether Those predictions are accurate.

(b) Even if we refind the tax revenue to The consumer and This makes it possible for The consumer to purchase Their previous consumption builde The Change in relative prices will generally influence be havior, and it will generally be true that The consumer buys less gas Than before.

To see This consider The fallowing graph.

(another good) m Suppose The consumer is initially at point A. he raise The price P2 Plop which makes The budget hare steeper, But The we give To Up Consumer enough - X, (995) additional morne that Roy can afford The previous burdle A at The new prices (indicated by The parallel shift in The budget line). Given the new price ratio the ransumer prefers point B to point A and Meretae consumes less gas even Though it is beasible to consume as much as before. 5(0) The first two sentences are correct. Firms do Minimize cost (this is necessary for profit max) and consumers do minimize expenditure (duchity says That The same consuption bundle minimizes expenditive ad maximizes whity simultaneously) However, The Theories are not identical because we do not impose a budget constraint on the firm he do not assure That a firm maximizes output subject to an expenditure ranstraint). We do impose, a budget Constraint on The consumer. This leads to important diblerences in The two Theories. For example we often have to warry about whether The is a solution to a firm's profit max problem, while we ravely warry about This for a utility max

problem. Le also have The Slotsky equation for The Consumer, but There is no similar equation for The firm.